Phase Behavior in the Hydrogen-Ammonia System

H. H. REAMER and B. H. SAGE

California Institute of Technology, Pasadena, Calif.

The volumetric and phase behavior of ammonia has been investigated in some detail (4-6), and the results are available to the engineering profession in a tabular form (3) utilized primarily by the refrigeration industry. These data supply the specific volume, enthalpy, and entropy of the liquid and gas phases of ammonia as a function of pressure and temperature. Detailed information concerning the vapor pressure of ammonia is available also (6). The volumetric behavior of hydrogen has been studied over the temperature range 40° to 250° F. (7,13). In addition, the volumetric behavior of mixtures of hydrogen and ammonia has been investigated (14).

The composition of the bubble point liquid of the hydrogenammonia system has been determined as a function of pressure and temperature with sufficient detail and accuracy (14) to make unnecessary further studies of this composition. However, satisfactory measurements of the composition of the gas phase of heterogeneous mixtures of hydrogen and ammonia have not come to the authors' attention. As part of a more general study of the transport properties of ammonia in the ammonia-hydrogen-nitrogen system, a study of the composition of the gas phase of heterogeneous mixtures of hydrogen and ammonia was made at temperatures between 40° and 250° F. and at pressures as high as 6000 p.s.i.

In the present investigation the data of Wiebe and Gaddy (13) on the volumetric behavior of hydrogen were used. The volumetric measurements of Cragoe and others $(4-\delta)$ were employed to establish the specific volume of ammonia, and the data of Wiebe and Tremearne (14) were used to establish the volumetric behavior of the liquid phase of mixtures of hydrogen and ammonia in heterogeneous equilibrium.

EQUIPMENT AND METHODS

A detailed description of the apparatus used for this investigation is available (12). The apparatus consisted, in principle, of a stainless-steel vessel in which heterogeneous mixtures of hydrogen and ammonia were confined over mercury. The pressure vessel was provided with a mechanical agitator driven through a stainless-steel wall by a rotating electromagnet. The pressure vessel was placed within an agitated oil bath, the temperature of which was controlled within small limits by a suitable electronic modulating circuit (10). Provision was made for the introduction and withdrawal of known amounts of mercury, thus permitting the total volume of the pressure vessel, exclusive of the space filled with mercury, to be determined with an uncertainty of the order of 0.25%. The volumetric measurements made in this way are of no direct consequence in the current investigation.

The pressure was measured with a balance (12) which was calibrated against the vapor pressure of carbon dioxide (2). The pressure within the equilibrium vessel was known within 0.03% or 0.2 p.s.i., whichever was the larger measure of uncertainty. The temperatures were determined with a platinum resistance thermometer of the strain-free type (8). This ther-

mometer was compared with a similar instrument which had been recently calibrated by the National Bureau of Standards. Experience indicates that the temperature of the heterogeneous mixture of hydrogen and ammonia was known within 0.02° F. of the international platinum scale (1).

The sample of the gas phase was withdrawn from the pressure vessel through an appropriate connection after the attainment of equilibrium. The withdrawal process was carried out under isobaric-isothermal conditions. Mercury was introduced at a rate sufficient to keep the pressure within the equilibrium vessel constant. The composition of the gas withdrawn was determined by two different methods. In one instance, the gas was passed through a condenser (9) which was maintained at the pressure and temperature of liquid air, and the quantity of ammonia collected was determined by gravimetric methods. The quantity of hydrogen removed was determined by the change in pressure in an evacuated glass bulb kept at a constant temperature. The second method of analysis involved the direct measurement of the specific weight of the gas phase withdrawn. From a knowledge of the volumetric behavior of gaseous mixtures of hydrogen and ammonia (14), it was a simple matter to evaluate the composition of the phase. These two methods gave satisfactory agreement, and it is believed that the composition of the gas phase withdrawn from the equilibrium vessel was known within 0.002 mole fraction of ammonia. At each equilibrium state two samples of the gas phase were withdrawn, thus affording a check upon the duplicability of the withdrawal process.

MATERIALS

The hydrogen used in this investigation was obtained from commercial sources and was prepared by electrolytic means. The hydrogen was passed over anhydrous calcium sulfate and then through a condenser which was maintained at the temperature of liquid nitrogen. Spectroscopic analyses of the hydrogen indicated it contained less than 0.003 mole fraction of impurities after this treatment. The ammonia was purchased as the anhydrous material and was dried by contact with anhydrous calcium sulfate. It was found that the vapor pressure of the ammonia varied with quality less than 0.02 p.s.i. at a constant temperature of 100° F. On the basis of these findings it was estimated that the ammonia contained less than 0.002 mole fraction of impurities.

EXPERIMENTAL RESULTS

Table I records the composition of the gas phase withdrawn from heterogeneous mixtures of hydrogen and ammonia. The experimental data for the gas phase for each of the five temperatures involved in this study are depicted in Figure 1 on a pressure-composition diagram. The standard error of estimate from the smooth curves representing compositions of the dew point gas as a function of pressure and temperature was 0.0013 mole fraction of hydrogen. This standard error of estimate was

Dressure	Compr. Molo	Dragoure	Compr. Mole
PSI	Fraction Hydrogen	PSI	Fraction Hydrogen
1.0.1.	fraction Hydrogen	1.5.1.	and D
222.47	40°F.	455646	220°F.
223.17	0.6601	1556.16	0.2312
3/8.94	0.7907	1/46.45	0.2772
499.16	0.8370	1967.84	0.3227
699.92	0.8804	2190.01	0.3567
1133.06	0.9218	2502.02	0.4066
1504.94	0.9401	2810.52	0.4418
2091.63	0.9540	3083.67	0.4706
3200.43	0.9638	3406.84	0.4970
4600.55	0.9702	3718.20	0.5166
5213.98	0.9707	4003.30	0.5311
		4497.34	0.5600
	100° F.	4895.14	0.5743
		5539.21	0.5970
356.19	0.3743	6046.12	0.6093
523.42	0.5551		
760.64	0.6732		250° F.
819.50	0.6956		
899.73	0.7279	2524.72	0.2367
1010.07	0.7439	3123.68	0.2884
1212.84	0.7878	4173.62	0.3430
1690.47	0.8363	4604.71	0.3534
2076.92	0.8588		
2600.99	0.8810		
3068.58	0.8912		
4443.12	0.9166		
5908.38	0.9262		
	160° F.		
784.32	0.3044		
1056.95	0.4444		
1430.25	0.5620		
1810.86	0.6301		
2344.57	0.6912		
3400.04	0.7596		
4512.68	0.7986		
5499.56	0.8185		

Table I. Experimental Measurements in Gas Phase of Hydrogen-Ammonia System

Table II. Composition of Coexisting Liquid and Gas Phases in Hydrogen-Ammonia System

Composition,

Dragguno	Composition, Mole Fraction Hydrogen		Equilibrium Ratio		
P.S.I.	Dew point	Bubble point	Hydrogen	Ammonia	
	40° F.				
73.3ª	0	0		1.0000	
500	0.8370	0.0021	398.6	0.1633	
1000	0.9144	0.0040	228.6	0.0859	
1500	0.9401	0.0055	170.9	0.0602	
2000	0.9524	0.0070	136.0	0.0479	
2500	0.9595	0.0085	112.9	0.0408	
3000	0.9640	0.0102	94.51	0.0364	
3500	0.9664	0.0120	80.53	0.0340	
4000	0.9690	0.0140	69.21	0.0314	
5000	0.9705	0.0180	53.67	0.0300	
5500	0.9713	0.0101	47.87	0.0290	
6000	0.9720	0.0205	43 20	0.0286	
0000		010220	10.20	010200	
211.04	100° F.				
211.94	0	0		1.0000	
500	0.5350	0.0025	214.0	0.4662	
1500	0.7490	0.0056	133.8	0.2524	
2000	0.8562	0.0085	90.27	0.1795	
2500	0.8502	0.0115	74.43 59.72	0.1437	
3000	0.8923	0.0147	49 30	0.1239	
3500	0.9033	0.0217	41.63	0.1070	
4000	0.9110	0.0255	35.68	0.0914	
4500	0.9165	0.0295	31.07	0.0860	
5000	0.9215	0.0335	27.48	0.0812	
5500	0.9246	0.0375	24.66	0.0784	
6000	0.9270	0.0413	22.45	0.0761	
		160° F.			
492.8 ^a	0	0		1.0000	
500	0.0099	0.0001	99.00	0.9902	
1000	0.4220	0.0065	64.92	0.5818	
1500	0.5765	0.0115	50.13	0.4284	
2000	0.6554	0.0170	38.55	0.3510	
2500	0.7038	0.0230	30.60	0.3032	
3000	0.7395	0.0290	25.50	0.2683	
3500	0.7640	0.0350	21.83	0.2446	
4000	0.7831	0.0410	19.10	0.2262	
4500	0.7980	0.0470	16.98	0.2120	
5000	0.8098	0.0530	15.28	0.2008	
5500	0.8185	0.0590	12.87	0.1929	
0000	0.8200	0.0050	12.72	0.1855	
		220° F.			
989.5 ⁴	0	0		1.0000	
1000	0.0086	0.0004	21.50	0.9918	
2000	0.2162	0.0115	18.80	0.7950	
2000	0.3300	0.0220	14.00	0.0855	
2000	0.4630	0.0550	10.27	0.5634	
3500	0.5024	0.0450	8.971	0.5271	
4000	0.5343	0.0670	7.975	0.4991	
4500	0.5580	0.0775	7.200	0.4791	
5000	0.5788	0.0885	6.540	0.4621	
5500	0.5952	0.0995	5.982	0.4495	
6000	0.6096	0.1105	5.517	0.4390	
		250	۰ F		
13479					
1547	0.0530	0.0102	5 1 9 6	0.9568	
2000	0.0550	0.0102	5 1 5 5	0.7508	
2500	0.2332	0.0490	4 7 5 9	0.8063	
3000	0.2795	0.0650	4.300	0.7706	
3500	0.3128	0.0805	3.886	0.7474	
4000	0.3360	0.0953	3.526	0.7339	
4500	0.3528	0.1110	3.178	0.7300	
5000	0.3615	0.1247	2.899	0.7295	
5500	0.3679	0.1367	2.691	0.7322	
6000	0.3701	0.1500	2.467	0.7411	
^a Vapor press	ure of ammor	iia, p.s.i.			

determined on the assumption that all the error lay in the mole fraction of hydrogen and none in the establishment of the prevailing equilibrium pressure and temperature.

The experimental data of Wiebe and Tremearne (14), were used to establish the composition of bubble point liquid as a function of pressure and temperature. The standard error of

Figure 1. Composition of the gas phase in heterogeneous mixtures of hydrogen and ammonia

estimate of these experimental data from smooth curves of bubble point pressure as a function of composition and temperature was 0.0001 mole fraction of hydrogen.

Smoothed values of the mole fraction of hydrogen in the liquid and gas phases are presented in Table II together with the equilibrium ratio. The equilibrium ratio is defined by

$$K_k = \frac{y_k}{x_k} \tag{1}$$

where y_k represents the mole fraction of component k in the gas phase and x_k represents the mole fraction of component k in the liquid phase.

The product of the equilibrium ratio and the pressure, PK, which provides a convenient means of representing the phase behavior of such binary systems (11), is presented in Figure 2. In Figure 3 the data for ammonia are shown upon an enlarged scale for the region of low pressure. These data indicate that the critical pressure of this system is markedly in excess of 6000 p.s.i.

The present data serve to establish the phase behavior of the hydrogen-ammonia system at temperatures between 40° and 250° F. for pressures up to 6000 p.s.i. The results indicate that this system exhibits the phase behavior normally encountered in binary systems in which there is no chemical reaction between the components.

Figure 2. Equilibrium ratios for hydrogen in the hydrogen-ammonia system

Figure 3. Equilibrium ratios for ammonia in the hydrogen-ammonia system

ACKNOWLEDGMENT

Virginia Berry prepared the data in a form suitable for publication, and Ann Hansen contributed to preparation of the manuscript.

LITERATURE CITED

- Beattie, J. A., Benedict, M., Blaisdell, B. E., Kaye, J., Proc. Am. Acad. Arts Sci. 77, 255 (1949).
- (2) Bridgeman, O. C., J. Am. Chem. Soc. 49, 1174 (1927).
- Bureau of Standards, Washington, D. C., "Tables of Thermodynamic Properties of Ammonia," Circ. 142 (April 16, 1923).
- (4) Cragoe, C. S., Harper, D. R., Sci. Papers Bur. Standards 17, 287 (1922).
 (1922).
- (5) Cragoe, C. S., McKelvy, E. C., O'Connor, C. F., *Ibid.*, 18, 707 (1922-23).
- (6) Cragoe, C. S., Meyers, C. H., Taylor, C. S., Ibid., 16, 1 (1920).
- (7) Deming, W. E., Shupe, L. E., Phys. Revs. 40, 848 (1932).
- (8) Meyers, C. H., Bur. Standards J. Research 9, 807 (1932).
- (9) Reamer, H. H., Fiskin, J. M., Sage, B. H., Ind. Eng. Chem. 41, 2871 (1949).
- (10) Reamer, H. H., Sage, B. H., Rev. Sci. Instr. 24, 362 (1953).
- (11) Reamer, H. H., Sage, B. H., Lacey, W. N., IND. ENG. CHEM., CHEM. ENG. DATA SER. 1, 29 (1956).
- (12) Sage, B. H., Lacey, W. N., Trans. Am. Inst. Mining Met. Engrs. 136, 136 (1940).
- (13) Wiebe, R., Gaddy, V. L., J. Am. Chem. Soc. 60, 2300 (1938).
- (14) Wiebe, R., Tremearne, T. H., Ibid., 56, 2357 (1934).

RECEIVED for review, June 26, 1958. Accepted September 12, 1958.

Results of one phase of research carried out by the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. DA-04-495-Ord-18, sponsored by the Department of the Army, Ordnance Corps.